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Abstract
Background—The majority of studies relating amyloid pathology with brain volumes have been
cross-sectional. Apolipoprotein E4 (APOE4), a genetic risk factor for Alzheimer’s disease (AD),
is also associated with hippocampal volume loss. No studies have considered the effects of
amyloid pathology and APOE4 together on longitudinal volume loss.

Methods—We evaluated whether an abnormal level of cerebrospinal fluid beta-amyloid (CSF
Aβ) and APOE4 carrier status were independently associated with greater hippocampal volume
loss over 1 year. We then assessed whether APOE4 status and CSF Aβ acted synergistically,
testing the significance of an interaction term in the regression analysis. We included 297
participants: 77 cognitively normal (NC), 144 with mild cognitive impairment (MCI), and 76 with
AD.

Results—An abnormal CSF Aβ level was found to be associated with greater hippocampal
volume loss over 1 year in each group. APOE4 was associated with hippocampal volume loss only
in the NC and MCI groups. APOE4 carriers with abnormal CSF Aβ in the MCI group acted
synergistically to produce disproportionately greater volume loss than noncarriers.

Conclusion—Baseline CSF Aβ predicts progression of hippocampal volume loss. APOE4
carrier status amplifies the degree of neurodegeneration in MCI. Understanding the effect of
interactions between genetic risk and amyloid pathology will be important in clinical trials and our
understanding of the disease process.

Keywords
apolipoprotein E4; hippocampal atrophy; beta-amyloid; biomarker; MRI

1. Introduction
Fibrillar beta-amyloid (Aβ) plaques, one of the hallmarks of Alzheimer’s disease (AD), have
been shown to be associated with hippocampal atrophy in multiple cross-sectional positron
emission tomography (PET) studies using the amyloid ligand, Pittsburgh Compound B (PiB)
[1-5]. A few studies have found similar correlations between cerebrospinal fluid (CSF) Aβ,
an indirect measure of cerebral amyloid deposition [6,7], and hippocampal atrophy [8,9].
However, studies relating Aβ pathology with longitudinal volume loss have been mixed.
One PiB-PET study found a strong association between brain Aβ and change in regional
MRI volumes in normals, but only a trend in AD [3]. One study reported an association
between CSF Aβ and the rate of hippocampal atrophy [10], although CSF p-tau was found
to be a better predictor, and two other studies found no correlation between Aβ and the rate
of whole brain atrophy [11,12].
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The primary goal of our study was to determine whether baseline CSF Aβ level is associated
with longitudinal hippocampal volume loss, incorporating data from the multicenter
Alzheimer’s Disease Neuroimaging Initiative (ADNI) (www.loni.ucla.edu\ADNI). Since
apolipoprotein E4 (APOE4), a well-documented genetic risk factor for developing AD
[13,14], is associated with increased brain Aβ [15-18] and hippocampal atrophy [19-21], we
further explored whether APOE4 modifies the relationship between abnormally low CSF Aβ
and hippocampal volume loss.

2. Methods
2.1. Participants

The participants in this study were recruited through the ADNI between 2005 and 2008, a
longitudinal study including 56 centers in the U.S. and Canada with the purpose of
identifying biomarkers of early Alzheimer’s disease (AD) for clinical trials
(www.adni-info.org). The ADNI was funded by the National Institute on Aging (NIA), the
National Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug
Administration (FDA), private pharmaceutical companies, and non-profit organizations, as a
5-year public-private partnership.

2.2. APOE genotyping and clinical assessment
All participants underwent APOE genotyping at the baseline visit. Approximately 6 ml of
blood were obtained from each participant in an EDTA tube, gently mixed by inversion, and
shipped at ambient temperature to a single designated laboratory within 24 hours of
collection for analysis.

Participants ranged in age from 55 to 90, did not have major depression or severe systemic
illnesses that would interfere with participation, and did not take investigational or
psychometric medications. The normal controls (NC) subjects had no memory complaint,
had preserved activities of daily living, scored between 26 and 30 on a baseline Mini-Mental
Status Examination (MMSE) [23], scored a 0 on the Clinical Dementia Rating scale (CDR)
[24], and scored within the normal range on the Logical Memory II subscale (delayed
paragraph recall) from the Wechsler Memory Scale – Revised (WMS-R Log Mem) [25].
The subjects with mild cognitive impairment (MCI) had a memory complaint that was
verified by a study partner, had preserved activities of daily living, and scored between 24
and 30 on the MMSE, 0.5 on the CDR, and below the normal range on the WMS-R Log
Mem. The AD subjects scored between 20 and 26 on the MMSE, between 0.5 or 1 on the
CDR, and met NINCDS/ADRDA criteria for probable AD [26]. Written consent was
obtained from all subjects participating in the study, and the study was approved by the
institutional review board at each participating site.

2.3. CSF analysis
As described in the ADNI protocol (www.adni-info.org), all 56 participating centers were
asked to perform lumbar punctures on at least 20% of their participants. Approximately half
of the participants recruited at each center underwent lumbar puncture for cerebrospinal
fluid analysis. CSF samples were banked and batch-processed at a single laboratory, as
described previously [27]. Briefly, lumbar puncture was performed with a 20- or 24-gauge
spinal needle at the baseline visit after an overnight fast. The CSF samples were then
transferred into polypropylene transfer tubes, frozen on dry ice within an hour after
collection, and shipped on dry ice overnight to a single designated laboratory. After thawing
for 1 hour at room temperature and gentle mixing, 0.5 ml aliquots were prepared from these
samples. The aliquots were then stored in bar code-labeled polypropylene vials at −80°C
and measured using the xMAP Luminex platform (Luminex Corp, Austin, TX) with
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Innogenetics (INNOBIA AlzBio3, Ghent, Belgium) immunoassay kit-based reagents, which
included the monoclonal antibody specific for Aβ1-42 (4D7A3).

In our analysis, the baseline CSF Aβ level was dichotomized as either abnormal, i.e.
reflective of underlying Alzheimer’s pathology, or normal (Figure 1). It was previously
published that using a threshold CSF Aβ value of 192 pg/ml yielded a sensitivity of 96% for
detecting Alzheimer’s disease, based on a sample of non-ADNI normal controls and subjects
with Alzheimer’s disease using the same CSF assay [28]. Furthermore, this cutoff value
showed 91% agreement with evidence of brain amyloid using Pittsburgh Compound B in
positron emission tomography imaging [29].

2.4. MRI acquisition
Participants underwent the following standardized 1.5 T MRI protocol
(http://www.loni.ucla.edu/ADNI/Research/Cores/index.shtml): two T1-weighted MRI scans,
using a sagittal volumetric magnetization prepared rapid gradient echo (MP-RAGE)
sequence, with an echo time (TE) of 4 ms, repetition time (TR) of 9 ms, flip angle of 8°, and
acquisition matrix size of 256 × 256 × 166 in the x-, y- and z-dimensions with a nominal
voxel size of 0.94 × 0.94 × 1.2 mm [30].

2.5. MRI post-processing
The raw Digital Imaging and Communications in Medicine MRI data were downloaded
from the Laboratory of Neuro Imaging (LONI) Image Database Archive
(http://www.loni.ucla.edu/ADNI/Data/index.shtml). The images were aligned, skull-
stripped, and segmented using FreeSurfer software, version 4.3
(http://surfer.nmr.mgh.harvard.edu/) [31]. Bilateral hippocampal volumes, obtained from
this segmentation, were averaged in the analyses. The change in hippocampal volumes over
1 year was calculated by subtracting the baseline hippocampal volume from the volume at
follow-up and normalized by the time difference.

2.6. Statistical analyses
We excluded 33 subjects who carried at least one APOE2 allele to avoid confounding the
analysis, since APOE2 is believed to be protective against development of AD and slow
rates of hippocampal atrophy [32,33]. Our final cohort thus includes 297 subjects who had a
lumbar puncture and at least 2 MRI scans, spaced 1 year apart – 77 NC, 144 MCI, and 76
with probable AD (Table 1).

All statistical analyses were programmed in R, version 2.9.2 (www.r-project.org). Model
assumptions were assessed with plots of residuals. APOE genotype was dichotomized into
APOE4 carriers (E3/4 or E4/4) and noncarriers (APOE3/3). Age, baseline hippocampal
volume, gender, and years of education were included as covariates in every model.

We first determined whether an abnormal baseline CSF Aβ level and APOE4 carrier status
were independently associated with 1-year change in hippocampal volumes in all stages,
after adjusting for covariates, using ordinary least squares regression. If both risk factors
were significantly associated with volume loss, we then tested for interaction between
APOE4 and CSF Aβ. To do so, we centered CSF Aβ on its mean to reduce collinearity and
included an interaction term between APOE4 and CSF Aβ, which was considered significant
at the α = 0.05 level.
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3. Results
3.1. Group characteristics

The group characteristics are summarized in Table 1. Mean CSF Aβ was significantly lower
in APOE4 carriers compared to noncarriers at each clinical stage, consistent with previous
literature [15-18]. The APOE4 MCI group was slightly younger and included more women.
No significant differences in MMSE were seen between carriers and noncarriers. Without
adjusting for covariates, the change in raw hippocampal volumes over 1 year was
significantly different by APOE4 status in the NC and MCI groups, but not in AD.

3.2. Association between CSF Aβ and 1-year change in hippocampal volumes
Participants with an abnormally low CSF Aβ level had greater volume loss in all groups. In
the NC group, participants with a low CSF Aβ level had a 138 mm3 greater 1-year volume
loss than those with a normal CSF Aβ level (p < 0.001). In the MCI group, participants with
a low CSF Aβ level had a 71 mm3 greater volume loss than those with a normal CSF Aβ
level (p = 0.03). In the AD group, participants with a low CSF Aβ level had a 300 mm3

greater 1-year volume loss than those with a normal CSF Aβ level (p < 0.001).

3.3. Association between APOE4 and 1-year change in hippocampal volumes
Participants who carried at least one APOE4 allele had greater volume loss in the NC and
MCI groups. In the NC group, APOE4 participants had a 121 mm3 greater 1-year volume
loss than those without an APOE4 allele (p < 0.007). In the MCI group, APOE4 participants
had a 76 mm3 greater volume loss than those without an APOE4 allele (p = 0.01). In the AD
group, APOE4-positive and APOE4-negative participants demonstrated no difference in 1-
year volume loss (p = 0.66).

3.4. Testing for APOE4-CSF Aβ interaction in NC and MCI
Since both APOE4 and a low CSF Aβ level were associated with greater volume loss in the
NC and MCI groups, we then tested for an APOE4-CSF Aβ interaction in these groups. No
significant APOE4-CSF Aβ interaction was seen in the NC group (β = 138, p = 0.19). There
was however a significant interaction between APOE4 and CSF Aβ in the MCI group (β =
−181, p = 0.02). Compared to APOE4-noncarriers with normal CSF Aβ, APOE4-carriers
with abnormal CSF Aβ had 88 mm3 greater volume loss over 1 year (p = 0.02). Compared
to APOE4-noncarriers with abnormal CSF Aβ, APOE4-carriers with abnormal CSF Aβ had
97 mm3 greater volume loss over 1 year (p = 0.004).

4. Discussion
The major findings of this study are: 1) an abnormally low baseline CSF Aβ level,
suggestive of underlying Alzheimer’s pathology, predicted 1-year change in hippocampal
volumes in all groups; 2) APOE4 carriers demonstrate greater hippocampal volume loss
only in the NC and MCI groups; 3) APOE4 and low CSF Aβ are synergistic risk factors,
such that APOE4 carrier status amplifies the predicted 1-year volume loss beyond that
predicted by a low CSF Aβ alone.

The finding that an abnormally low CSF Aβ predicted 1-year hippocampal volume loss is
consistent with the predominantly cross-sectional literature, which describes an association
between amyloid pathology and hippocampal atrophy [1-5,8-10]. Some have postulated that
the large extracellular amyloid plaques disrupt cortico-hippocampal pathways, leading to
neurodegeneration [2]. Another hypothesis is that insoluble plaques detected in
cerebrospinal fluid are an indirect marker of soluble Aβ oligomers, which may be the
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inciting agent in Alzheimer’s disease, by disrupting hippocampal synapses and promoting
volume loss [34,35].

The second finding that APOE4 is associated with greater longitudinal hippocampal volume
loss in the NC and MCI groups is also compatible with prior literature. Numerous studies
suggest that APOE4 carriers demonstrate increased vulnerability to developing AD, which is
manifested through neurodegeneration [36-39]. A reason for the lack of increase volume
loss among APOE4 carriers in the AD group may be that, although APOE4 carriers develop
AD at an earlier age [13], once the disease is clinically apparent in an individual, APOE4 no
longer alters the course of the disease. The lack of a significant difference in hippocampal
volumes among APOE4 carriers and noncarriers with AD has also been reported in prior
studies [40,41].

Finally, the finding that the presence of a genetic risk factor, APOE4, amplifies the
association between CSF Aβ and progressive hippocampal volume loss in MCI is novel.
One possible explanation for this is that the APOE4 carriers with low CSF Aβ are more
likely to have Alzheimer’s pathology. Although an abnormally low CSF Aβ is highly
sensitive for detecting brain amyloid associated with AD, it is not an entirely specific for
AD [28]. Some of the participants with low CSF Aβ may have frontotemporal dementia and
would not demonstrate the same degree of hippocampus-specific volume loss as prodromal
Alzheimer’s patients [42]. However, this argument would also be true among NC subjects,
in which no interaction was demonstrated.

A second explanation for the APOE4-CSF Aβ interaction in MCI could be explained by a
temporal progression of pathological mechanisms resulting from the APOE4 genotype.
Early on when subjects demonstrate normal cognition, the predominant effect of APOE4
appears to be to increase brain amyloid deposition, as reported by numerous prior studies
[15-18]. Since, both APOE4 carrier status and a low CSF Aβ, as defined by our cutoff value,
reflect greater brain amyloid, no interaction is seen in our NC group. However, once
cognitive impairment is evident clinically, as in the MCI group, the effects of Aβ and
APOE4 on pathogenesis of Alzheimer’s disease may diverge, thus resulting in
disproportionately greater volume loss in those with both risk factors. Indeed, APOE4 has
been found to be associated with an inability to repair synaptic damage, more rapid
promotion of other neurotoxic species, such as tau, susceptibility to oxidative stress, and
promotion of inflammatory cascades [17], beyond simply increasing levels of brain amyloid.
Further work examining this interaction is warranted.

A third possible explanation is that both APOE4 and a low CSF Aβ are markers of disease
progression. According to the literature, only 10-15% of individuals with MCI will convert
to AD each year [43]. The other 85-95% of stable MCI individuals may be more likely have
higher levels of CSF Aβ and be APOE4-negative, thus resulting in slower hippocampal
volume loss.

Several study limitations deserve mention. First, the ADNI was designed to mimic a trial
population, so participants were more educated, more Caucasian, and had fewer
comorbidities than a community-based cohort [22]. The generalizability of our conclusions
is thus controversial, and the length of follow-up was short. Second, this was a secondary
analysis of the cohort, so there were different proportions of APOE4 carriers individuals at
each clinical stage. Overall, the NC and AD groups had about half the number of
participants as the MCI group, resulting in reduced power to detect differences. Rather than
take a sample with balanced proportions, we wanted to include all available data.
Furthermore, an allelic dose-dependent effect of APOE4 could not be explored, since only
two NC were homozygous for APOE4, and the MCI and AD had imbalanced proportions of
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heterozygotes and homozygotes. Third, we only included hippocampal volumes as a marker
of structural change to limit the number of comparisons. Inclusion of other limbic or whole
brain markers would potentially detect more APOE4 effects not described in our analysis.
Further prospective studies are needed to validate our findings.

In summary, we demonstrated that baseline CSF levels of Aβ are predictive of near-term
hippocampal volume loss. The strengths of this study include the recruitment of participant
from multiple centers, longitudinal follow-up, and consideration of all 3 clinical stages. We
further raised the possibility of an APOE4-CSF Aβ interaction on longitudinal hippocampal
atrophy among MCI participants. As interest grows in using hippocampal atrophy as an
outcome in clinical trials, it will be important to consider how varying risk factors and
biomarkers interact and influence the progression of neurodegeneration.
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Figure 1. Association between baseline CSF Aβ level and 1-year change in hippocampal volumes
The CSF Aβ level of less than 192 pg/ml (as delineated by the solid line) is considered
abnormal in this study, i.e. reflective of underlying Alzheimer’s pathology. Greater than 192
pg/ml is considered normal.
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